Anatomía y fisiología del tejido adiposo. Importancia para el tratamiento de la obesidad
Texto completo:
PDFResumen
Introducción: El tejido adiposo era considerado un reservorio metabólico de almacenamiento y liberación de substratos de energía. A mediados de los años 1980, ese concepto fue modificado a partir de la identificación de su actuación en la fisiología sexual por medio de los esteroides sexuales. Se plantea que la ubicación topográfica del tejido adiposo hace que tenga perfiles metabólicos distintos, lo cual lo hace susceptible de participar en el desarrollo de ciertas patologías.
Objetivo: Realizar una revisión bibliográfica sobre la anatomía y fisiología del tejido adiposo y su relevancia para el tratamiento de la obesidad con técnicas de contorneado corporal.
Métodos: La búsqueda de la información se realizó mediante consulta de recursos bibliográficos como las bases de datos ScienceDirect, SciELO, Medline y Pubmed. Se revisaron todos los artículos que pudieron ser recuperados completos, publicados entre 2000 y 2022 y se seleccionaron aquellos considerados relevantes.
Conclusiones: La evolución del concepto de tejido adiposo a órgano adiposo ha permitido demostrar que estas células presentan una serie de roles y funciones, hasta hace poco completamente desconocidas para este tejido. Entre estas se destacan la homeostasis energética (metabolismo de lípidos, carbohidratos, control del apetito, termogénesis), el sistema inmunológico, la función reproductiva, la hemostasia y la angiogénesis.
Palabras clave
Referencias
Lin CS, Xin ZC, Deng CH, Ning H, Lin G, Lue TF. Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol. 2010;25(6):807-15.
Sánchez JC, Romero CR, Muñoz LV, Rivera RA. El órgano adiposo, un arcoiris de regulación metabólica y endocrina. Rev Cub Endocrinol. 2016 [acceso: 20/12/2019];27(1):105-19. Disponible en: www.scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1561-29532016000100010
Sánchez J, López D, Pinzón Ó, Sepúlveda J. Adipocinas y síndrome metabólico: múltiples facetas de un proceso fisiopatológico complejo. Rev Colomb Cardiol. 2010 [acceso: 20/12/2019];17(4):167-76. Disponible en: www.scielo.org.co/pdf/rcca/v17n4
Proenca AR, Sertie RA, Oliveira AC, Campana AB, Caminhotto RO, Chimin P, et al. New concepts in white adipose tissue physiology. Braz J Med Biol Res. 2014 [acceso: 20/12/2019];47(3):192-205. Disponible en: www.scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0100-879X2014000300192
Frigolet ME, Gutiérrez Aguilar R. The colors of adipose tissue. Gac Med Mex. 2020;156(2):142-149. DOI: https://doi.org/10.24875/GMM.M20000356
Rodríguez López CP, González Torres MC, Cruz Bautista I, Nájera Medina O. Visceral obesity, skeletal muscle mass and resistin in metabolic syndrome development. Nutr Hosp. 2019;36(1):43-50. DOI: https://dx.doi.org/10.20960/nh.1889
Escobar Vega H, Miquet Romero LM, Exposito Jalturin A, Espinosa Romero G. Cambios en la composición corporal tras tratamiento de la lipodistrofia abdominal mediante liposucción. Rev Cub de Alim y Nut. 2018 [acceso: 20/12/22019];28(1). Disponible en: http://www.revalnutricion.sld.cu/index.php/rcan/article/view/526
Mejia Montilla J, Reyna Villasmil E, Álvarez Mon M, Fernández Ramírez A. Células madre pluripotentes inducidas y adipogénesis. Rev Venez Endocrinol Metabol. 2018 [acceso: 20/12/2019];16(1):3-11. Disponible en: https://www.redalyc.org/journal/3755/375555047002/html/
Wang L, Liu Y, Hu F, Zhou Z. Los posibles mecanismos de pardeamiento del tejido adiposo blanco: una diana novedosa para el tratamiento de la obesidad. Nutr Hosp. 2022;39(2):411-424. DOI: https://doi.org/10.20960/nh.03852
Vega Robledo GB, Rico Rosillo MG. Adipose tissue: immune function and alterations caused by obesity. Rev Alerg Mex. 2019;66(3):340-53. DOI: https://doi.org/10.29262/ram.v66i3.589
Smitka K, Maresova D. Adipose tissue as an endocrine organ: An update on pro-inflammatory and anti-inflammatory microenvironment. Prague Med Rep. 2015 [acceso: 20/12/2019];116(2):87-111. Disponible en: www.pmr.If1.cuni.cz/media/pdf/pmr_2015116020087.pdf
Glaves A, Díaz Castro F, Farías J, Ramírez Romero R, Galgani JE, Fernández Verdejo R. Association Between Adipose Tissue Characteristics and Metabolic Flexibility in Humans: A Systematic Review. Front Nutr. 2021;8:744187. DOI: https://doi.org/10.3389/fnut.2021.744187
Sánchez JC, Romero CR, Muñoz LV, Rivera RA. El órgano adiposo, un arcoiris de regulación metabólica y endocrina. Rev Cubana Endoc. 2016 [acceso: 20/12/2019;27(1). Disponible en: https://www.medigraphic.com/cgi-bin/new/resumenI.cgi?IDARTICULO=65285
Cannon B, Nedergaard J. Metabolic consequences of the presence or absence of the thermogenic capacity of brown adipose tissue in mice (and probably in humans). Int J Obes (Lond). 2010;34(suppl 1):S7-16. DOI: https://doi.org/10.1038/ijo.2010.177
Muñoz MF, Argüelles S, Marotta F, Barbagallo M, Cano M, Ayala A. Effect of Age and Lipoperoxidation in Rat and Human Adipose Tissue-Derived Stem Cells. Oxid Med Cell Longev. 2020:6473279. DOI: https://doi.org/10.1155/2020/6473279
Esteve Ràfols M. Tejido adiposo: heterogeneidad celular y diversidad funcional. Endocrinol Nutr. 2014;61(2):100-12. DOI: https://doi.org/10.1016/j.endonu.2013.03.011
Wang L, Liu Y, Hu F, Zhou Z. Los posibles mecanismos de pardeamiento del tejido adiposo blanco: una diana novedosa para el tratamiento de la obesidad. Nutr Hosp. 2022;39(2):411-424. DOI: https://doi.org/10.20960/nh.03852
Escobar Vega H, Vargas Rincon, GD, Exposito Jalturin A, Miquet Romero LM. Sobre los cambios en los lípidos séricos 6 meses después de la dermolipectomía abdominal. Rev Cubana Alim Nut. 2019 [acceso: 20/12/2019];29(1). Disponible en: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=96748
Bacakova L, Zarubova J, Travnickova M, Musilkova J, Pajorova J, Slepicka P, et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review. Biotechnol Adv. 2018;36(4):1111-26. DOI: http://dx.doi.org/10.1016/j.biotechadv.2018.03.011
Kajimura S, Spiegelman BM, Seale P. Brown and beige fat: Physiological roles beyond heat generation. Cell Metabolism. 2015;22(4):546-59. DOI: https://doi.org/10.1016/j.cmet.2015.09.007
Corina Sosa B, Basurto L, Luqueño E, Robledo A, Mendieta Zerón H, Oros Pantoja R. Los colores del tejido adiposo y la relación con la irisina. Cir Cir. 2020;88(5):664-71. DOI: https://doi.org/10.24875/CIRU.20000057
Doornaert M, Colle J, De Maere E, Declercq H, Blondeel P. Autologous fat grafting: Latest insights. Ann Med Surg (Lond). 2018;37:47-53. DOI: http://dx.doi.org/10.1016/j.amsu.2018.10.016
Frigolet ME, Dong Hoon K, Canizales Quinteros S, Gutiérrez Aguilar R. Obesidad, tejido adiposo y cirugía bariátrica. Bol Med Hosp Infantil Mex. 2020;77(1):3-14. https://doi.org/10.24875/bmhim.19000115
Rodríguez López CP, González Torres MC, Cruz Bautista I, Nájera Medina O. Visceral obesity, skeletal muscle mass and resistin in metabolic syndrome development. Nutr Hosp. 2019;36(1):43-50. DOI: https://dx.doi.org/10.20960/nh.1889
Tamayo Carbon AM, Escobar Vega H, Cuastumal Figueroa DK. Alcance de las células madre derivadas de tejido adiposo. Rev Cubana Hemat Inmunol Hemot. 2021 [acceso: 20/12/2019];37(2):e1237. http://revhematologia.sld.cu/index.php/hih/article/view/1237/1169
Prada PO, Hirabara SM, de Souza CT, Schenka AA, Zecchin HG, Vassallo J, et al. Retraction Note to: L-glutamine supplementation induces insulin resistance in adipose tissue and improves insulin signalling in liver and muscle of rats with diet-induced obesity. Diabetologia. 2018;61(1):253. DOI: https://doi.org/10.1007/s00125-007-0723-z
Obaíd M, Riquelme R, Calderón W, Raue M, Rojas M. Method of isolation, culture and hypoxia preconditioning of adipose tissue stem cells in rats. Cir Plast Iberolatinoam. 2019;45(2):107-14. DOI: https://dx.doi.org/10.4321/s0376-78922019000200003
Lisbona González MJ, Reyes Botella C, Muñoz Soto E, Olmedo Gaya MV, Moreno Fernández J, Díaz Castro J. Body composition, mineral metabolism, and endocrine function of adipose tissue: influence of a nutritional supplement of propolis. Nutr Hosp. 2021;38(3):585-91. DOI: https://doi.org/10.20960/nh.03438
Torres S, Fabersani E, Marquez A, Gauffin Cano P. Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics. Eur J Nutr. 2019;58(1):27-43. DOI: https://doi.org/10.1007/s00394-018-1790-2
Yoshimura K. Cell-Assisted Lipotransfer and Therapeutic Use of Adipose Stem Cells Thereafter. Aesthetic Plast Surg. 2020;44(4):1266-7. DOI: http://dx.doi.org/10.1007/s00266-020-01781-4
Salazar Vargas G, Neyra Chagua V, Pitot Álvarez C, Muñoz Jáuregui A, Aguilar Mendoza L. Estudios en neurociencias: aportes para la investigación en cultivo de células madre mesenquimales. Persona. 2018;21(1):109-17. https://repositorio.ulima.edu.pe/handle/20.500.12724/6801
Yoshimura K. Cell-Assisted Lipotransfer and Therapeutic Use of Adipose Stem Cells Thereafter. Aesthetic Plast Surg. 2020;44(4):1266-7. DOI: http://dx.doi.org/10.1007/s00266-020-01781-4
Escobar Vega H. Gluteoplastia de aumento con injerto graso autólogo y plasma rico en plaquetas activado. Acta Médica. 2021 [acceso. 20/12/2019];22(3):e190. http://www.revactamedica.sld.cu/index.php/act/article/view/190
Simonacci F, Bertozzi N, Grieco MP, Grignaffini E, Raposio E. Procedure, applications, and outcomes of autologous fat grafting. Ann Med Surg (Lond). 2017;20:49-60. DOI: https://doi.org/10.1016/j.amsu.2017.06.059
Manzaneda R, Cano F, Adrianzen G: Pérdida permisible de grasa en liposucción: fórmula y aplicación informática para cuantificar un nuevo concepto. Cir Plast Iberolatinoam. 2021;47:19-28. DOI: https://dx.doi.org/10.4321/s0376-78922021000100004
Vinci V, Valaperta S, Klinger M, Montanelli A, Specchia C, Forcellini D, et al. Metabolic Implications of Surgical Fat Removal. Increase of Adiponectin Plasma Levels After Reduction Mammaplasty and Abdominoplasty. Annals Plastic Surg. 2016;76(6):700-4. DOI: https://doi.org/10.1097/SAP.0000000000000240
Enlaces refback
- No hay ningún enlace refback.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.