Evaluation of Three Risk Adjustment Procedures for Hospital Stay as A Performance Indicator

Authors

  • Teddy Osmin Tamargo Barbeito Hospital Clínico Quirúrgico Hermanos Ameijeiras
  • Susel Quesada Peña
  • Angela Rosa Gutiérrez Rojas
  • Nirka López León

Keywords:

hospital stay, Related Diagnosis Groups, risk adjustment.

Abstract

Introduction: The hospital stay is the indicator par excellence of the efficiency of the services provided. However, it is well known that its changes are not only subject to efficiency problems, but also to the characteristics of the patients, which constitute the resource for its calculation.

Objective: To evaluate three risk adjustment procedures for hospital stay as a performance indicator.

Methods: Retrospective research in the Internal Medicine service at Hermanos Ameijeiras Clinical Surgical Hospital in 2019 first semester. Five hundred thirty four (534) medical records of living Cuban patients were included. The capacity of each procedure to detect inefficiencies in hospital care was evaluated through the analysis of variance and the construction of ROC curves.

Results: There were significant differences between the three areas under the ROC curves. For the procedure that uses the Severity Index of Clinical Services of Hermanos Ameijeiras Hospital, the result was 0.800 (p <0.001) (95% CI 0.749 - 0.851). For the Related Diagnosis Groups, the area under the ROC curve was 0.738 (p <0.001) (95% CI 0.680 - 0.796). In the case of multiple linear regression, the area under the ROC curve was 0.747 (p <0.001) (95% CI 0.690 - 0.805).

Conclusions: The risk adjustment procedure that estimates the expected stay from the severity index was the most effective for detecting efficiency problems. Its use is recommended because its simplest calculation.

Downloads

Download data is not yet available.

References

Jiménez Paneque RE. Indicadores de calidad y eficiencia de los servicios hospitalarios: una mirada actual. Rev Cubana Salud Pública. 2004 [acceso: 13/08/2009];30(1):17-36. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-34662004000100004&lng=es&nrm=iso&tlng=es .

Jiménez R, Domínguez E, López L, Fariñas H. Difference between observed and predicted lenght of stay as indicator of patient care inefficiency. Internat J Quality Health Care. 1999;11(5):375-84. DOI: https://doi.org/10.1093/intqhc/11.5.375

Martins M, Blais R, da Costa Leite I. Mortalidade hospitalar e tempo de permanência: comparação entre hospitais públicos e privados na região de Ribeirão Preto, São Paulo, Brasil. Cad Saúde Pública. 2004;20(Sup 2):268-82. DOI: https://doi.org/10.1590/S0102-311X2004000800021

Omachonu VK, Suthummanon S, Akcin M, Asfour S. Predicting length of stay for Medicare patients at a teaching hospital. Health Serv Manage Res. 2004;17(1):1-12. DOI: https://doi.org/10.1258/095148404322772688

Tamargo Barbeito TO, Jiménez Paneque RE. El ajuste por riesgo en la evaluación del desempeño hospitalario. Rev Cubana Salud Pública. 2009 [acceso: 13/08/2009];35(3). Disponible en: http://bvs.sld.cu/revistas/spu/vol35_3_09/spu10309.htm

Horn SD, Horn RA. Reliability and validity of the severity of illness index. Med Care. 1986;24(2):159-78. DOI: https://doi.org/10.1097/00005650-198602000-00007

Jiménez RE, Vázquez J, Fariñas H. Construcción y validación de un índice de gravedad para pacientes hospitalizados en áreas clínicas. Gaceta Sanitaria, Xunta de Galicia. 1997;11:122-30. DOI: https://doi.org/10.1016/S0213-9111(97)71287-1

Kądziołka I, Świstek R, Borowska K, Tyszecki P, Serednicki W. Validation of APACHE II and SAPS II scales at the intensive care unit along with assessment of SOFA scale at the admission as an isolated risk of death predictor. Anaesthesiol Intensive Ther. 2019;51(2):107-111. DOI: http://doi.org/10.5114/ait.2019.86275

Bertoli P, Grembi V. The political economy of diagnosis-related groups. Soc Sci Med. 2017;190:38-47. DOI: http://doi.org/10.1016/j.socscimed.2017.08.006

Jiao W. Diagnosis-Related Groups' Payment Reform in Beijing. Chin Med J (Engl). 2018;131(14):1763-1764. DOI: http://doi.org/10.4103/0366-6999.235869

Jackson T, Dimitropoulos V, Madden R, Gillett S. Australian diagnosis related groups: Drivers of complexity adjustment. Health Policy. 2015;119(11):1433-41. DOI: http://doi.org/10.1016/j.healthpol.2015.09.011

Gonnella JS, Louis DZ. Disease staging classification system. Med Care. 1987;25(4):360. DOI: https://doi.org/10.1016/S0213-9111(97)71287-1

Abood RA, Hasson HM, Khalaf AA, Saleh EM. Impact of Comorbidities on Survival Among Patients with Chronic Myeloid Leukaemia Using the Charlson Comorbidity Index: Retrospective study from Basra, Iraq. Sultan Qaboos Univ Med J. 2019;19(3):e236-e41. DOI: http://doi.org/10.18295/squmj.2019.19.03.010

Yang CC, Fong Y, Lin LC, Que J, Ting WC, Chang CL, et al. The age-adjusted Charlson comorbidity index is a better predictor of survival in operated lung cancer patients than the Charlson and Elixhauser comorbidity indices. Eur J Cardiothorac Surg. 2018;53(1):235-40. DOI: http://doi.org/10.1093/ejcts/ezx215

Gorbanev I, Agudelo S, Cortes A, Yepes F. Cultura innovadora y grupos relacionados de diagnóstico en un hospital de alta complejidad, Colombia. Rev Salud Pública (Bogotá). 2016 [acceso: 21/04/2021];(2):251-62. Disponible en: https://www.redalyc.org/articulo.oa?id=42245920009

Barragán-Hervella R, Montiel-Jarquín A, Limón-Serrano I, Escobedo-Sosa V, Loria-Castellanos J. Costo directo de la atención primaria del traumatismo craneoencefálico (TCE) leve en adultos mediante grupos relacionados por el diagnóstico (GRD) en el tercer nivel de atención médica. Gac Med Mex. 2016 [acceso: 21/04/2021];152(6):755-60. Disponible en: https://www.anmm.org.mx/GMM/2016/n6/GMM_152_2016_6_755-760.pdf

Reynaldos-Grandón K, Saiz-Alvarez JM, Molina-Muñoz Y. Competencias profesionales, gestión clínica y grupos relacionados de diagnósticos. El caso de hospitales públicos chilenos. Rev. Salud Pública. 2018;20(4):472-78. DOI: https://doi.org/10.15446/rsap.v20n4.66564

Yetano Laguna J, López Arbeloa G. Manual de descripción de los Grupos Relacionados por el Diagnóstico (AP-GRD v.25.0). 5ta. edición. Administración de la Comunidad Autónoma de Euskadi, Gobierno Vasco: Osakidetza; 2010.

Tamargo Barbeito TO, Jiménez Paneque RE, Gutiérrez Rojas AR, Mora Díaz I. Dos procedimientos de ajuste por riesgo para la estadía hospitalaria como indicador de desempeño. Revista Cubana de Salud. 2012 [acceso: 21/03/2021];38(1):29-44. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-34662012000100004&lng=es

Librero J, Peiró S, Ordiñana R. Comorbilidad crónica y homogeneidad de los grupos diagnósticos relacionados. Gaceta Sanitaria 1999;13(4):292-302. DOI: https://doi.org/10.1016/S0213-9111(99)71371-3

Organización Panamericana de la Salud. Clasificación estadística internacional de enfermedades y problemas relacionados con la salud. 9na. Revisión. Washington DC, EEUU: OPS; 1975. Vol. 1

Ministerio de Sanidad y Consumo. El proyecto NIPE y el proyecto Análisis y desarrollo de los GDR en el Sistema Nacional de Salud. España; Centro de Publicaciones. 2005 [acceso: 30/04/2021]:83-93. Disponible en: https://1library.co/document/zgrww1vq-capitulo-proyecto-proyecto-analisis-desarrollo-sistema-nacional-salud.html#fulltext-content

Cerda J, Cifuentes L. Uso de curvas ROC en investigación clínica: Aspectos teórico-prácticos. Rev Chil infectol. 2012 [acceso: 21/11/2019];29(2):138-41. Disponible en: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-10182012000200003&lng=es

Bernard AM, Mynard R, Rosevear JS, McMahon LF. The integrated inpatient management. Med Care. 1995;7:663-75. DOI: https://doi.org/10.1097/00005650-199507000-00003

Ryan S, Lowe CS, Hardes G. A quantitative approach to quality improvement and resource allocation. Qual Clin Pra. 1995;15:11-6. PMID: 7757319

Jiménez Paneque RE, Lam RM, Marot M, Delgado A. Observed-predicted length of stay for an acute psychiatric department, as an indicator of inpatient care inefficiencies. Retrospective case-series study. BMC Health Serv Res. 2004;4:4. DOI: http://doi.org/10.1186/1472-6963-4-4

Hosmer DW, Lemeshow S. Applied Logistic Regression. 2nd ed. John Wiley & Sons, Inc. 2000. pp. 156-164.

Published

2021-10-22

How to Cite

1.
Tamargo Barbeito TO, Quesada Peña S, Gutiérrez Rojas AR, López León N. Evaluation of Three Risk Adjustment Procedures for Hospital Stay as A Performance Indicator. Acta Médica [Internet]. 2021 Oct. 22 [cited 2025 Apr. 3];22(3). Available from: https://revactamedica.sld.cu/index.php/act/article/view/220

Issue

Section

Artículos originales